Home MATHEMATICS TOPIC 1: NUMBERS ~ MATHEMATICS FORM 1

TOPIC 1: NUMBERS ~ MATHEMATICS FORM 1

5107
23
BASIC MATHEMATICS FORM ONE FULL NOTES PERIMETERS AND AREAS COORDINATE OF A POINT PROFIT AND LOSS NUMBERS GEOMETRY Approximations UNITS DECIMAL AND PERCENTAGEFRACTIONS TOPIC 1: NUMBERS ~ MATHEMATICS FORM 1

TOPIC 1: NUMBERS ~ MATHEMATICS FORM 1

NUMBERS

We know that when we count we start 1,2 …. . But there are other numbers like 0, negative numbers and decimals.

All these types of numbers are categorized in different groups like counting numbers, integers, real numbers, whole numbers and rational and irrational numbers according to their properties. all this have been covered in this chapter

Base Ten Numeration

Numbers are represented by symbols called numerals. For example, numeral for the number ten is 10. Numeral for the number hundred is 110 and so on.

The symbols which represent numbers are called digits. For example the number 521 has three (3) digits which are 5, 2 and 1. There are only tendigits which are used to represent any number. These digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

The Place Value in each Digit in Base Ten Numeration

Identify the place value in each digit in base ten numeration

When we write a number, for example 521, each digit has a different value called place value. The 1 on the right means 1 ones which can be written as 1 × 1, the next number which is 2 means 2 tens which can be written as 2 × 10 and the last number which is 5 means 5 hundreds which can be written as 5 × 100. Therefore the number 521 was found by adding the numbers 5 × 100 + 2 × 10 + 1× 1 = 521.

Note that when writing numbers in words, if there is zero between numbers we use word ‘and’

Example 1

Write the following numbers in words:

  1. 7 008
  2. 99 827 213
  3. 59 000
Solution
  1. 7 008 = Seven thousand and eight.
  2. 99 827 213 = Ninety nine millions eight hundred twenty seven thousand two hundred thirteen.
  3. 59 000 = Fifty nine thousand.
Example 2

Write the numbers bellow in expanded form.

  1. 732.
  2. 1 205.
Solution
  1. 732 = 7 x 100 + 3 x 10 + 2 x 1
  2. 1 205 = 1 x 1000 + 2 x 100 + 0 x 10 + 5 x 1
Example 3

Write in numerals for each of the following:

  1. 9 x 100 + 8 x 10 + 0 x 1
  2. Nine hundred fifty five thousand and five.
Solution
  1. 9 x 100 + 8 x 10 + 0 x 1 = 980
  2. Nine hundred fifty five thousand and five = 955 005.
Example 4

For each of the following numbers write the place value of the digit in brackets.

  1. 89 705 361 (8)
  2. 57 341 (7)
Solution
  1. 8 is in the place value of ten millions.
  2. 7 is in the place value of thousands.

Numbers in Base Ten Numeration

Read numbers in base ten numeration

Base Ten Numeration is a system of writing numbers using ten symbols i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Base Ten Numeration is also called decimal system of Numeration.

Numbers in Base Ten Numeration up to One Billion

Write numbers in base ten numeration up to one billion

Consider the table below showing place values of numbers up to one Billion.

Billions
Hundred millions
Ten millions
Millions
Hundred Thousands
Ten Thousands
Thousands
Hundreds
Tens
Ones
1
1 0
1 0 0
1 0 0 0
1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

If you are given numerals for a number having more than three digits, you have to write it by grouping the digits into groups of three digits from right. For example 7892939 is written as 7 892 939.

When we are writing numbers in words we consider their place values. For example; if we are told to write 725 in words, we first need to know the place value of each digit. Starting from right side 5 is in the place value of ones, 2 is in the place value of tens and seven is in the place value of hundreds. Therefore our numeral will be read as seven hundred twenty five.

Numbers in Daily Life

Apply numbers in daily life

Numbers play an important role in our lives. Almost all the things we do involve numbers and Mathematics. Whether we like it or not, our life revolves in numbers since the day we were born. There are numerous numbers directly or indirectly connected to our lives.

The following are some uses of numbers in our daily life:

> Calling a member of a family or a friend using mobile phone.

> Calculating your daily budget for your food, transportation, and other expenses.

> Cooking, or anything that involves the idea of proportion and percentage.

> Weighing fruits, vegetables, meat, chicken, and others in market.

> Using elevators to go places or floors in the building.

> Looking at the price of discounted items in a shopping mall.

> Looking for the number of people who liked your post on Facebook.

> Switching the channels of your favorite TV shows.

> Telling time you spent on work or school.

> Computing the interest you gained on your business.

Operations with Whole Numbers

We have four operations which are: addition (+), subtraction (-), multiplication ( X) and division (÷).

Addition of Whole Numbers

Add whole numbers

When adding numbers we add the corresponding digits in their corresponding place values and we start adding from the right side i.e. from the place value of ones to the next.

We can add numbers horizontally or vertically.

Horizontal addition

Example 5
  1. 972 + 18=
  2. 23 750 + 250 =
Solution
  1. 972 + 18 = 990
  2. 23 750 + 250 = 24 000
Vertical addition

Example 6

8Wxyxm Pajecj365Lgdwesvsplfqaigoh94Ynjudod7Ad4Vehjcwhtkww3Tbl Yycrase43N1Sibhslgjaeqd85Irzzmomnxsgwes5G3Kkxqf4U6Imhcalaufibty5Xwb8Nzv8Tmziczvokwtywvkxom6Scpvlc4Qbnn 72Ml8Fbqpmxpqnwozhdgple5Zzq2A3Qf42V=S0 D

Subtraction of Whole Numbers

Subtract whole numbers

Subtraction is denoted by the sign (-). It is sometimes called minus. Subtraction is the opposite of addition. Subtraction also means reduce a number from certain number and the answer that is obtained is called difference..

Subtraction is done in similar way like addition. We subtract the corresponding digits in their corresponding place value. For example; 505 – 13.

We first subtract ones, which are 5 and 3. Subtract3 from 5 gives 2. Followed by tens which are 0 and 1.

Subtract 1 from 0 is not possible. In order to make it easy, take 1 from 5 (hundreds). When 1 is added to 0 it has to be changed to be tens since it is added to a place of tens.

So, when 1 comes into a place of tens it becomes 10. So add 10 to 0. We get 10. Now, subtract 1 from 10. We get 9. We are left with 4 in a place of hundreds since we took 1. There for our answer will be 492.

Note that similar manner will be used when subtracting.

Example 7
Zearyruvz3P 7Eldkdkufpbzp Nwnkot Zfp8G1Krbu2 Dtskhfnhf6B5Ilhaovzkgguxa Flac4Diqevwfarmukw0Dwde Vun 5Giaseprz2Or4Geaj3Tr5Cri2Wjdgf Fsmip6Ol0B 2Grrouhtihrivdukmjnhaklirwlezqvcoihwgh0Vvgsghc Erqqeoxhnh3Q=S0 D

Multiplication of Whole Numbers

Multiply whole numbers

Multiplication means adding repeatedly depending on the times number given. For example; 25 6 means add 25, repeat adding 6 times i.e. 25 + 25 + 25 + 25 +25 + 25 = 150. The answer obtained after multiplying two or more numbers is called product.

The number being multiplied is called a multiplicand while the number used in multiplying is called a multiplier. Referring our example, 25 is multiplicand and 6 is multiplier.

Example 8
Os8Auhefprvjdrlat Dpi1Lmdygtk0Ffpchofsvvjftu8Cdnwnalflievg1Gni3Zviekzjmndoosxvxegz6Vzgfs1Vcf1Yw1Csjk4F2Oazcirv4V1Rtcptdxordnhxihq0Woycsiw5Yvglg4Biy2Lgjleiz8Hca8Rdfzirsu5Unx0Wo6Ewnknjjvj0Laud8Onbb0Kwj=S0 D

Division of Whole Numbers

Divide whole numbers

Division is the same as subtraction. You subtractdivisor(the number used to divide another number) from dividend (the number which is to be divided), we repeat subtracting divisor to the answer obtained until we get zero. The answer is how many times you repeat subtraction.

For example; 27 ÷9, we take 27 we subtract 9, we get 18. Again we take 18 we subtract 9, we get 9. We take 9 we subtract 9 we get 0. We repeat subtraction three times. Therefore the answer is 3.

The answer obtained is called quotient.

Referring to our example; 27 is dividend, 9 is divisor and 3 is quotient. If a number can’t be divided exactly, what remains or left over is calledremainder.

Example 9
Gmojcpv3Qb Dr8Qgbi3Ojl7Ixxd2P2V6Ic Th2Sbiancwzgtmhxc44Dtf15Xeen2Ua10D4Hx9Vwoqb Ktgb8Ejdxzgsoi6Eaipjqvzw5Jinia790Wsqtrcz0Ntcytjjcnp9 7Gk Ponepkx9S42Zlxavuk3Bn0Fanxc2I9Bseql633Ygpduulzn1 Bhod7Qd 6Wug 8N=S0 D

The Four Operations in Solving Word Problems

Use the four operations in solving word problems

Sometimes you may be given a question with mixed operations +, -, xand ÷ . We do multiplication and division first then addition and subtraction.

Example 10
  1. 12 ÷ 4 + 3 x 5
  2. 14 x2 ÷ 7 – 3 + 6
Solution
  1. 12 x 4 + 3 x 5 =3 + 15 (do division and multiplication fist) =18
  2. 14 x 2 ÷ 7 – 3 + 6 =28 ÷ 7 – 3 + 6 (multiply first) =4 – 3 + 6 (then divide) =10 – 3 (add then subtract) =7

We may use brackets to separate x,÷ , + and – if they are mixed in the same problem and use what is called BODMAS . BODMAS is the short form of the following:

B for Brackets O for Open D for Division M for Multiplication A for Addition and S for Subtraction

Therefore, with mixed operations, we first do the operation inside the brackets; we say that we open the brackets. Then we do division followed by multiplication, addition and lastly subtraction.

Example 11
Ahrg0Pz92D4P7Pzys4Ceickvfgkkovnetif3Dkd2Gwu Auieatru 6Lvgw Ufd8Ipyvkf9Ohxztrp5Waiazn3Mmps8Yz8Eiv7Hixqw2Ntrabnydovxqd77Thq4Lditbflo2Wr Hebbxtlva2Vofffnoad Jo2Hlori04Pkienconqft 78Djg02Yf4Mprg6Uzynvnk4G=S0 D

Word problems on whole numbers

Example 12

In a school library there are 6 shelves each with 30 books. How many books are there?

Solution

Each shelf has 30 books

6 shelves have 30 × 6 = 180 books.

Therefore, there are 180 books.

Example 13

Juma’s mother has a garden with Tomatoes, Cabbages and Water Lemons. There are 4 rows of Tomato each with 30 in it. 6 rows of Cabbages with 25 in each and 3 rows of Water Lemo

Solution

There are 30 Tomatoes in each row
4 rows will have 30 × 4 = 120 Tomatoes
Each row has 25 Cabbages
6 rows have 25 × 6 = 150 Cabbages
Each row has 15 Water Lemons
3 rows have 15 × 3 = 45 Water Lemons
In total there 120 + 150 + 45 = 315 plants.

Therefore in Juma’s mother garden there are 315 plants.

Example 14

A school shop collects sh 90 000 from customers each day. If sh 380 000 from the collection of 6 days was used to buy books. How much money was left?

Each day the collection is sh 90 000
6 days collection is sh 90 000 × 6 = sh 540 000
The money left will be = Total collection – Money used
= sh 540 000 – sh 380 000 = sh 160 000
Therefore the money left was sh 160 000

Exercise 1

1. For each of the following numbers write the place value of a digit in a bracket.

  1. 899 482 (4)
  2. 1 940 (0)
  3. 9 123 476

2. Write the numerals for each of the following problems.

i. Ten thousand and fifty one.

ii. Nine hundred thirty millio

Factors of a Number

Find factors of a number

Consider two numbers 5 and 6, when we multiply these numbers i.e. 5 6 the answer is 30. The numbers 5 and 6 are called factors or divisors of 30 and number 30 is called a multiple of 5 and 6. Therefore factors are the divisors of a number.

Example 15

Find all factors of 12

Note that, when listing the factors we don’t repeat any of it.

Consider a number line below
Numberline 1469438620903

The numbers from 0 to the right are called positive numbers and the numbers from 0 to the left with minus (-) sign are called negative numbers. Therefore all numbers with positive (+) or negative (-) sign are called integers and they are denoted by Ζ. Numbers with positive sign are written without showing the positive sign.

For example +1, +2, +3, … they are written simply as 1, 2, 3, … . But negative numbers must carry negative sign (-). Therefore integers are all positive and negative numbers including zero (0). Zero is neither positive nor negative number. It is neutral.

The numbers from zero to the right increases their values as the increase. While the numbers from zero to the left decrease their values as they increase. Consider a number line below.

Number 1469438746162

If you take the numbers 2 and 3, 3 is to the right of 2, so 3 is greater than 2. We use the symbol ‘>’ to show that the number is greater than i. e. 3 >2(three is greater than two). And since 2 is to the left of 3, we say that 2 is smaller than 3 i.e. 2<3. The symbol ‘<’ is use to show that the number is less than.

Consider numbers to the left of 0. For example if you take -5 and -3. -5 is to the left of -3, therefore -5 is smaller than -3. -3 is to the right of -5, therefore -3 is greater than -5.

Generally, the number which is to the right of the other number is greater than the number which is to the left of it.

If two numbers are not equal to each to each other, we use the symbol ‘≠’ to show that the two numbers are not equal. The not equal to ‘≠’ is the opposite of is equal to ‘=’.

Example 21

Represent the following integers Ζ on a number line
  1. 0 is greater than Ζ and Ζ is greater than -4
  2. -2 is less than Ζ and Ζ is less than or equal to 1.
Solution

a. 0 is greater than Ζ means the integers to the left of zero and Ζ is greater than -4 means integers to the left of -4. These numbers are -1, -2 and -3. Consider number line below

Inte 1469439043082
b. -2 is less than Ζ means integers to the right of -2 and Ζ is less than or equal to 1 means integers to the left of 1 including 1. These integers are -1, 0 and 1. Consider the number line below
Inte 1469439157177
Example 22

Put the signs ‘is greater than’ (>), ‘is less than’ (<), ‘is equal to’ (=) to make a true statement.

Inte 1469442397304

Inte 1469439314480Addition of Integers

Example 23
2 + 3
Show a picture of 2 and 3 on a number line.
Inte 1469439501717

When drawing integers on a number line, the arrows for the positive numbers goes to the right while the arrows for the negative numbers goes to the left. Consider an illustration bellow.

Inte 1469439690032

The distance from 0 to 3 is the same as the distance from 0 to -3, only the directions of their arrows differ. The arrow for positive 3 goes to the right while the arrow for the negative 3 goes to the left.

Example 24
-3 + 6
Solution
Inte 1469440334253

Subtraction of Integers

Since subtraction is the opposite of addition, if for example you are given 5-4 is the same as 5 + (-4). So if we have to subtract 4 from 5 we can use a number line in the same way as we did in addition. Therefore 5-4 on a number line will be:

Inte 1469440463191

Take five steps from 0 to the right and then four steps to the left from 5. The result is 1.

Multiplication of Integers

Example 25

2×6 is the same as add 2 six times i.e. 2×6 = 2 + 2 + 2 + 2 + 2 +2 = 12. On a number line will be:
Inte 1469440713586

Multiplication of a negative integer by a negative integer cannot be shown on a number line but the product of these two negative integers is a positive integer.

From the above examples we note that multiplication of two positive integers is a positive integer. And multiplication of a positive integer by a negative integer is a negative integer. In summary:

  • (+)×,(+) = (+)
  • (-)×,(-) = (+)
  • (+)×,(-) = (-)
  • (-)×,(+) = (-)

Division of Integers

Example 26

6÷3 is the same as saying that, which number when you multiply it by 3 you will get 6, that number is 2, so, 6÷3 = 2.

Therefore division is the opposite of multiplication. From our example 2×3 = 6 and 6÷3 = 2. Thus multiplication and division are opposite to each other.

Dividing two integers which are both positive the quotient (answer) is a positive integer. If they are both negative also the quotient is positive. If one of the integer is positive and the other is negative then the quotient is negative. In summary:

  • (+)÷(+) = (+)
  • (-)÷(-) = (+)
  • (+)÷(-) = (-)
  • (-)÷(+) = (-)

Mixed Operations on Integers

Perform mixed operations on integers

You may be given more than one operation on the same problem. Do multiplication and division first and then the rest of the signs. If there are brackets, we first open the brackets and then we do division followed by multiplication, addition and lastly subtraction. In short we call it BODMAS. The same as the one we did on operations on whole numbers.

Example 27

9÷3 + 3×2 -1 =
Solution
9÷3 + 3×2 -1
=3 + 6 -1 (first divide and multiply)
=8 (add and then subtract)

Example 28

(12÷4 -2) + 4 – 7=
Solution
(12÷4 -2) + 4 – 7
=1 + 4 – 7 (do operations inside the brackets and divide first)
=5 – 7 (add)
=2

23 COMMENTS

  1. Hey just wanted to give you a brief heads up and let you
    know a few of the images aren’t loading properly.

    I’m not sure why but I think its a linking issue.

    I’ve tried it in two different browsers and both show the same outcome.

  2. I do not know if it’s just me or if everyone else experiencing problems
    with your site. It appears like some of the text in your posts are running off
    the screen. Can someone else please provide feedback and let me know
    if this is happening to them as well? This could be a issue with my internet browser because I’ve had
    this happen previously. Thanks

  3. I’m now not certain where you’re getting your information, however good topic.
    I needs to spend a while studying much more or figuring out more.
    Thank you for fantastic info I was searching for this info for my
    mission.

  4. Nice post. I learn something new and challenging on blogs I stumbleupon every day.
    It will always be helpful to read through articles from other authors
    and practice something from their websites.

  5. You actually make it seem so easy together with your presentation however I find this topic to be really something which
    I think I’d never understand. It seems too complicated and extremely wide
    for me. I am looking ahead in your next submit, I’ll attempt to
    get the hold of it! asmr 0mniartist

  6. Woah! I’m really digging the template/theme of this blog.
    It’s simple, yet effective. A lot of times it’s tough to get that “perfect balance” between usability and appearance.
    I must say that you’ve done a very good job with
    this. Additionally, the blog loads very quick for me on Firefox.
    Outstanding Blog! asmr 0mniartist

  7. Hello there! I just want to offer you a big thumbs up for your great info
    you’ve got here on this post. I will be coming back to your web site for
    more soon. 0mniartist asmr

  8. Hey there! I’m at work browsing your blog from my new apple
    iphone! Just wanted to say I love reading through your blog and look forward to
    all your posts! Keep up the great work!

LEAVE A REPLY

Please enter your comment!
Please enter your name here