Home CHEMISTRY TOPIC 3: WATER | CHEMISTRY FORM 2

TOPIC 3: WATER | CHEMISTRY FORM 2

1612
21
TOPIC 6: PERIODIC CLASSIFICATION | CHEMISTRY FORM 2

TOPIC 3: WATER | CHEMISTRY FORM 2

Occurrence and Nature of Water

Water is the most abundant liquid in nature. It is a compound of hydrogen and oxygen. It occurs on land as seas, oceans, rivers, springs, wells, etc. It also occurs in the atmosphere as rain, water vapour, clouds, etc.

Water is the essential constituent of animal and plant life. Without water, no life could exist on earth. All living things need water to
survive.

About 60% of the human body by mass is made of water. A human being needs to drink about 2 litres of water per day to replace the water lost from the body via sweat, urine, breath, faeces, etc. If you did not replace this by eating and drinking, you would die in a matter of days.

Water is more important than food. A human being can survive without food for many weeks, but will die in a few days without water. So without water, no life can be sustained.

Water is the main constituent of the earth’s surface. 70% of the earth’s surface is covered by water. The remaining 30% is covered by land.

Types of water

There are four kinds of natural water namely, rain water, spring and well water, river water, and lake and sea water. Natural water is never pure.

Water from difference natural sources contains substances dissolved in it.

Rain water. This is naturally distilled water. It is almost pure and it contains only gases and dust dissolved from the air. If the dissolved gases are
acidic, e.g. sulphur dioxide, carbon dioxide or nitrogen dioxide, they
may form “acid rain”. In heavily industrialized countries where emission
of these gases is very great, acid rains have been experienced. Rain
water in non-industrial areas is fairly pure. It is safe to drink though
it is tasteless. The taste in water is due to dissolved substances in
it.

Spring and well water. When the rain falls, some water sinks into the ground to form ground water.
This water percolates down the earth until it meets layers of impervious
or impermeable (non-porous) rocks, which stop it from percolating or
seeping any further. The ground water may reach the earth’s surface as a
spring. When a whole deep enough is dug to reach the ground water, a
well results. Spring or well water is supposed to be clean, although it
contains dissolved substances. As water passes through the earth, it is
naturally filtered.

River water. River water contains dissolved and suspended solid materials. The water in
some rivers is very muddy or sandy depending on the nature of the land
from which the river originates and on which it flows. Most of the water
we drink or use at home and industries is from rivers. To make the
river water fit for use, all the substances dissolved and suspended in
it must be removed or filtered.

Lake and sea water. Lakes and seas receive water from rivers. River water contains dissolved
salts. As it flows through the land, some of its water evaporates into
the air. When it reaches the sea or lake, more water still evaporates.
As a result, sea and lake water will necessarily contain vast quantities
of dissolved substances. Sea water contains about 3.6% by mass of the
dissolved solids. Most of the dissolved solids compose largely of sodium
chloride that can be obtained from sea water in large quantities. Three
quarters of the ocean salts is sodium chloride (common salt).

THE WATER CYCLE

Water is always on move, travelling a never-ending, cyclical journey between
the earth and the sky. This journey is referred to as the water cycle or hydrological cycle.
The water cycle describes the continuous movement of water on, above
and below the surface of the earth. During its movement, water is
continuously reused and recycled. It also changes its physical state or
form (liquid, vapour, and ice) at various stages in the water cycle.
Figure 3.1 is a diagrammatic representation of the water cycle. It shows
how the water moves around the earth’s environment, changing its form
through the process of evaporation, transpiration (loss of water from
plants), condensation and precipitation (rainfall, snow, hail, fog,
smog, etc.)

Stages of the water cycle

Stages of the water cycle are described below:

Heat from the sun causes water to evaporate from exposed water bodies such as oceans, seas, lakes, rivers dams, etc. This causes huge amounts of water vapour to float (laden) in the air. The vapour rises up. In the cooler upper parts of the atmosphere, the vapour cools and condenses to form tiny water droplets. The droplets form clouds.

The clouds are drifted by wind. They cool further, and the droplets join to form larger drops of water which fall down as rain due to gravitation pull. On the other hand, if the air is very cold, they fall as hail, sleet or snow. The whole process is called precipitation.

Some rain water soaks, and reappears as springs. Some flows over the ground as streams.
The springs and streams feed rivers. The rivers flow to the ocean, sea or lake. The whole cycle starts again.

Screenshot From 2015 08 27 08 42 40 1440654267620Water Cycle and Environmental Conservation

Everyone understands why it is so important to keep our water clean. The fresh
water that is available for use by people, plants and animals must be
clean and safe.Sometimes human carelessness pollutes the water system, loading harmful and
unhealthy substances into the system at a rate that exceeds its natural
restorative capabilities. When harmful substances are discarded
(disposed off; dumped) into the environment, they may very well end up
as part of the water cycle. An example of these acts may happen when
untreated municipal and industrial wastes are directed into the water
bodies such as rivers, lakes and seas. These substances are toxic and
may harm human, marine, animal and plant life.When
chemicals are released into the air, they might well return to the
earth with rain and snow or by simply settling. For example in
industrial areas, sulphur dioxide dissolves in water from the clouds and
with oxygen from the atmosphere to form sulphuric acid.

Sulphur dioxide + water + oxygen gives sulphuric acid = “acid rain”

Screenshot From 2015 08 27 08 47 18 1440654453426

This then falls as “acid rain”. The acid rain washes salts from the top
soil. Acidic water and metal salts run into the lakes or rivers. The
introduction of these new substances consequently increases the acidity
and concentration of metal salts in the lake, river or stream. As a
result, fish and other marine life die.Nitrogen oxides, NOx,
can also cause acid rain. When nitrogen dioxide gas reacts with water
and oxygen in the atmosphere, the result is a weak solution of nitric
acid.

Screenshot From 2015 08 27 08 49 09 1440654599346

Carbon dioxide also reacts with water in the atmosphere to form a weak carbonic acid (rain water).

Screenshot From 2015 08 27 08 51 27 1440654681688

Pure water has a pH of 7.0. Normal rain is slightly acidic because of the
carbon dioxide gas dissolved into it. It has a pH of about 5.5.It has been confirmed that carbon dioxide (CO2), sulphur dioxide (SO2) and nitrogen oxides (NOx) are the primary causes of acid rain.When
harmful substances are dumped on land or buried in the ground, they
might well find their way into ground water or surface water. These
substances contaminate the water, which may be someone’s or some
community’s drinking water.Water
plays an important role in the conservation of the environment and in
determining human settlement and development. It also governs plant and
animal distribution. Animals and plants, as components of the
environment, are mainly concentrated in water or in areas where water is
found.Plant
roots bind the soil particles together, making the soil compact and
less susceptible to erosion. However, vegetation will only grow and
flourish on land that receives sufficient rainfall. This is possible
only if the water cycle is properly maintained by conserving natural
forests and planting more trees to attract rainfall. So it is obvious
that there is a strong relationship between rainfall (as a crucial stage
of the water cycle) and the vegetation and soil (as components of the
environment).We
use water from the lakes, rivers, wells or springs to irrigate crop and
non-crop plants. So, when we distort the water cycle in some way or the
other we may not have enough rainfall to fill up rivers or springs from
which we obtain the water we use to conserve our environment
(vegetation).Properly
watered soils support more plants. We all know that plants absorb
carbon dioxide from the atmosphere, therefore, helping to purify the air
naturally. In addition, plants produce oxygen gas, which is needed by
all living organisms. If there is not enough rainfall, most plants will
die, hence resulting to excessive accumulation of carbon dioxide, which
may rise to toxic levels.Excessive carbon dioxide in the atmosphere leads to intense heating of the earth’s surface, a phenomenon described as global warming.
The consequence of global warming include encroachment and extension of
desert and arid lands, prolonged droughts, changes in rainfall
patterns, etc.These few facts show that there is a strong relationship and correlation
between environmental conservation and the water cycle. Environmental
degradation can lead to serious and irreparable aftermath to the water cycle.

Properties of Water

Simple Experiments on Physical and Chemical Properties of Water

Activity 1. Perfom simple experiments on physical and chemical properties of water.Properties of WaterExplain properties of water

Physical properties

Includes

Extremely pure water is colourless, odourless and tasteless. The colour, taste or odours in water are due to dissolved impurities of organic and inorganic nature.

Pure water is a very poor conductor of heat and electricity. However, water containing some dissolved inorganic impurities may conduct appreciably.

Pure water freezes at 0ºC.

Pure water boils at 100ºC at a pressure of 760 mmHg; and pure water will boil away completely with no change in temperature.
Its melting point and boiling point are abnormally high due to hydrogen bonding.

It is the only substance that occurs naturally in all the three states of matter – solid, liquid and gas.

Water, as compared to other liquids, dissolves almost all substances, though in varying degrees of solubility. For this reason, water is usually called the universal solvent.

It has a high surface tension than other liquids.

It has a high specific heat index, which means that it can absorb a lot of heat before getting hot.

It is miscible with many liquids, for example ethanol.

The maximum density of pure water is 1 g cm-3 at 4ºC. When water is cooled gradually, it reaches its maximum density at 4 centigrade. The actual change from water to ice takes place at 0ºC.

Pure water is neutral to litmus and has a pH of 7.0.

Water expands when it freezes. Most substances contract when they change from liquid to solid state. Water is one of the very few substances that expand when they freeze. This behaviour is called anomalous expansion of water.
Ice is therefore much less dense than water. The water molecules in the ice crystals are further apart from each other than in liquid water.

Chemical properties

Action of heat

Water is extremely stable to heat. A stable compound does not decompose
easily by heating. It requires a very high temperature to decompose
water. Water decomposes lightly at 2500ºC. It approaches complete
decomposition at 5000ºC

Reaction with metals

The state in which water reacts with metals depends on the position of a metal in the electrochemical series as shown below:

Screenshot From 2015 08 27 09 02 21 1440655338767

It can be seen that water attacks metals differently depending on the metal’s position in the activity series. This is called the chemical activity series of metals.

Potassium

Potassium is vigorously attacked with cold water, producing hydrogen gas. The reaction of water with potassium is very violent and the hydrogen produced catches fire spontaneously with a lilac flame. The colour is due to the burning of small quantities of potassium vapour.

Screenshot From 2015 08 27 09 05 04 1440655509878

Sodium The reaction of sodium with water is vigorous but the hydrogen liberated
does not catch fire. Sodium reacts with cold water to produce hydrogen
gas, which is detected by effervescence as the gas is liberated. If a
flame is applied, it burns with a yellow flame (the yellow colour is
from sodium).

Screenshot From 2015 08 27 09 06 14 1440655603571

Calcium Calcium reacts with water relatively slowly compared to sodium and potassium.
The gas (hydrogen) given off explodes if mixed with air, and if a flame applied.

Screenshot From 2015 08 27 09 08 52 1440655756666

Magnesium Magnesium reacts with steam to liberate hydrogen and magnesium oxide.

Screenshot From 2015 08 27 09 11 18 1440655874996

Zinc If zinc is heated to redness in a current of steam, hydrogen is liberated.

Screenshot From 2015 08 27 09 13 32 1440656009273

Iron Iron does not react with cold water, but readily reacts with excess steam at red heat.

Screenshot From 2015 08 27 09 16 07 1440656203636

The above reaction can be made to proceed in the reverse direction by passing excess of hydrogen over heated triiron tetraoxide.

Reaction with non-metals

Carbon Red-hot carbon reacts with steam at 1000ºC to give a mixture of carbon monoxide and hydrogen, known as water gas.

Screenshot From 2015 08 27 09 21 19 1440656473746

Red-hot carbon reacts with steam at 1000ºC to give a mixture of carbon monoxide and hydrogen, known as water gas.Chlorine reacts with water to form a mixture of two acids.

Screenshot From 2015 08 27 09 23 56 1440656644442

Reaction with oxides1. Water reacts with the oxides of most reactive metals to form hydroxides:

Screenshot From 2015 08 27 09 26 13 1440656768431

2. Water reacts with the oxides of some non–metals to form acids:

Screenshot From 2015 08 27 09 43 22 1440657804214

Formation of hydrates

Water combines with many salts to form hydrates. Different salt hydrates have
different number of molecules of water of crystallization. The
following are some examples:

Screenshot From 2015 08 27 09 44 29 1440658081101

Synthesis of waterWater is a compound of hydrogen and oxygen. Its formula is H2O. You could make it in the laboratory by burning a jet of hydrogen in air. The reaction is fast and dangerous:

Screenshot From 2015 08 27 10 23 24 1440660205481

Hence, in the synthesis of water, hydrogen has to be prepared and then reacted
with the oxygen of the air to give water. The apparatus used for water
synthesis is as shown in figure 3.2 Hydrogen is produced by the
reaction between zinc and cold dilute sulphuric acid

Screenshot From 2015 08 27 10 15 26 1440659729041

But the hydrogen to be used for synthesis of water has to be absolutely
dry. This is achieved by passing it through anhydrous calcium chloride.
It is then allowed to pass through the jet. When the hydrogen has
displaced all the air in the apparatus, the gas is lit at the jet. The
water forms as a gas. The gas condenses to liquid on an ice-cold tube.
The burning hydrogen reacts with the oxygen of the air as given by the
equation below:

Screenshot From 2015 08 27 10 23 24 1440660205481
Screenshot From 2015 08 27 10 26 16 1440660561012

Physical tests for water

1. Water can be recognized by its action of turning white anhydrous copper (II) sulphate to blue.

Screenshot From 2015 08 27 11 06 03 1440662771614

The test, however, confirms the presence of water and not the absence of
everything else except water. For example, a dilute sulphuric acid would
turn anhydrous copper (II) sulphate from white to blue. That is why
this test is called a physical test as opposed to a chemical test for water.

2. The presence of water can also be shown by the use of cobalt chloride
paper. This is a filter paper impregnated with cobalt (II) chloride. The
paper is blue in colour. The blue paper turns pink when in contact with
water.

Screenshot From 2015 08 27 11 07 46 1440662987816

A chemical test for water

The two tests above only confirm the presence of water but do not indicate
the purity of the water. Now, how can we test if an unknown colourless
liquid contains water or if it is pure water? The presence of water will do the following:

  • Will turn anhydrous copper (II) sulphate from white to blue.
  • Will turn anhydrous cobalt (II) chloride from blue to pink.

To find out if a liquid is pure water, its boiling point or its freezing
point must be measured. Pure water boils at exactly 100ºC and freezes
at 0ºC at pressure of one atmosphere (760 mmHg). This is a chemical test for water.

Treatment and Purification of Water

Processes of Domestic Water Treatment and Purification

Water for domestic use is chiefly obtained from rivers, springs and wells;
and sometimes from lakes and seas. However, lake and sea waters may be
to too salty for drinking or washing and hence not normally used for
such purposes. But for some countries, the sea is a major source of
drinking water. However, this water must be desalinized (have its salt
removed) and purified before being used for drinking. The process is
very expensive. It involves an expenditure of big sums of money. It is
only practised in developed countries.

River and spring water must be boiled and filtered before drinking. At homes,
water is normally boiled in big pans, cooled down, and then filtered by
using a white, sterile and clean piece of cloth. The cloth is tied
around the mouth of the container as shown in figure 3.3(a). As water is
poured through the cloth, the particles in it are filtered off. The
clean water is then poured in clay pots or plastic buckets and placed in
a cool place, or put in a refrigerator to cool down ready for drinking.Alternatively,
boiled water can be filtered using a funnel as shown in figure (b)
bellow, but you must ensure the gravel, sand and cotton wool used are
thoroughly sterile. Sterilization can be achieved by soaking the gravel
and sand in hot boiled water for quite some time.

The gravel traps any large floating substances. The coarse sand prevents
small particles from passing through. The fine sand ensures even the
small suspended particles do not pass through, while the cotton wool
filters the very tiny particles.Screenshot From 2015 08 27 11 20 31 1440663730721

(a): Filtering water using a piece of clothScreenshot From 2015 08 27 11 22 01 1440663717062

(b): Filtering water using a funnel

At home, water can also be purified with chemical purifiers. These
chemicals are in liquid or tablet form. To purify water, a recommended
amount of the purifier is added to a specific amount of water in a
container. The water is shaken or stirred well. Then it is left to
settle for at least 20 minutes before it can be safe for drinking and
other domestic uses. To get the clearest water, it is advisable to
filter the water thoroughly before adding the purifier. The commonest
and most widely used purifiers are the waterguard and aquaguard. In
developed countries, commercial filters may be used to purify water at
home. These filters contain charcoal or ceramic element that purifies
the water as it passes through the filter.

The Processes of Urban Water Treatment

We obtain our water supply from surface water (for example, rivers, lakes and reservoirs) and ground water
(for example, underground aquifers and lakes). Water from these sources is never completely pure, particularly if it is drawn from a river. The water may contain:

  • bacteria – most are harmless, but some can cause diseases.
  • dissolved substances – for example, calcium and magnesium compounds dissolved from rocks; and gases from the air.
  • solid substances and debris – particles of mud, sand, grit, twigs, dead plants and perhaps tins and rags that people have dumped.

All these impurities are gathered by water as it passes through different
parts of land as rivers or streams. Before water is safe to drink, the
bacteria and solid substances must be removed.Different
towns and regions of the world apply different methods of water
treatment. The more sophisticated and expensive methods are used by rich
nations such as the UK and USA. Some steps in water treatment, however,
are basic and used by all. They include the following:Screenshot From 2015 08 27 11 29 12 1440664151469Urban water treatment and purification

1. After water has been pumped through the screen to get rid of the larger bits of rubbish, it is pumped through a coarsefilter which traps larger particles of solid. The filter could be beds of gravel and fine sand or anthracite.

2. In older purification plants, it may go to a sedimentation tank where chemicals are added to make smaller particles stick together. Then they
sink to the bottom of the tank. Many chemicals could be used but the
basic ones are the following:

(i) copper sulphate to remove algae;

(ii) sodium carbonate for softening; and

(iii) Aluminium sulphate in the form of potash alum, K2SO4.AL2(SO4)3.24H2O and slaked lime,Ca(OH)2are
added for coagulating and precipitating all the suspended earthy material (clay matter). Bacteria and other microorganisms are captured by the coagulated mud, and precipitated. Sometimes instead of potash alum, iron (III) alum, (NH4)2.Fe(SO4)3.24H2Ocan be used.The two chemicals (potash alum and slaked lime) react to form aluminium hydroxide and calcium sulphate:

Screenshot From 2015 08 27 12 03 18 1440666198536

The aluminium hydroxide is bulky and sticky. Therefore, bacteria,
microorganisms and small particles can stick to it and get precipitated.
The calcium sulphate is by far denser than water. Both the solid
products (aluminium hydroxide, plus organic and inorganic particles
stuck on it, and calcium sulphate) sink to the bottom of the tank. The
whole process is called sedimentation.

3. Water from the sedimentation tank is passed through a fine filter.
The filter could be made of layers of sand, gravel or carbon granules
with thousands of tiny pores. The carbon removes coloured matter, odours
(tastes) and noxious smells from the water. Filtration beds are
expensive to install and require considerable labour to maintain.

4. After filtering, the water is chlorinated and may be aerated.
Chlorine is added to kill harmful bacteria. Chlorine is such a useful
disinfectant that it is used in swimming pools to kill bacteria. In
aeration, water is pumped through fountains and sprout into the air.
Aeration kills many dangerous aquatic bacteria. In some countries and
regions, water is fluorinated by adding sodium fluoride to the water
supply to help prevent tooth decay. Finally, the water is pumped to
storage tanks, and then to homes and factories.

Importance of water treatment and purification

It is very important that community water supply be well treated and purified. There are several reasons for this practice. The following are some of the reasons:

To kill harmful and disease-causing microorganisms such as bacteria, fungi, actinomycetes, amoeba, salmonella, etc.

To remove toxic substances dissolved in water

To remove solid substances and debris from the water such as tins, lags, plant remains, sand, algae, spirogyra, etc.

To remove suspended earthy material (clay matter)

To remove odour and unpleasant smells caused by different contaminants dissolved in water.

To remove water hardness – sodium carbonate is added in water to remove both temporary and permanent hardness in water to make the water soft. Soft water forms lather easily with soap as compared to hard water which forms scum instead. This means that soft water requires less soap to form enough lather than hard water does. Therefore, soft water saves soap and hence money that could have been spent to purchase extra soap for washing.

The sodium fluoride added to water in some areas helps to fight tooth decay.

Uses of Water

Water is one of the most vital natural resources for all life on earth. The
availability and quantity of water have always played an important part
in determining not only where people can live, but also their quality of
life. Even though there always has been plenty of fresh water on earth,
water has not always been available when and where it is needed, nor is
it always suitable for all uses. Water must be considered as a finite
resource that has limits and boundaries to its availability and sustainability for use.

Where water supply is limited, conflicts may result between and among the
various uses. The balance between supply and demand for water is a
delicate one. The availability of usable water has and will continue to
dictate where and to what extent development will occur. Water must be
in sufficient supply for an area to develop, and an area cannot continue
to develop if water demand far exceeds supply.Water has numerous uses in life.

The following are some of the uses of water:

Biological use: Water is essential to life. Most of the reactions in animals and plants
take place in solutions in water. Plants absorb minerals from the soil
in solution form. Animals and plants are found near or in areas where water can be found.

Domestic use: Domestic water use is probably the most important daily use of water for
most people. It includes water that is used in the home every day
including water for normal household purposes such as washing clothes
and dishes, drinking, bathing, food preparation, flushing toilets, and watering lawns and gardens, etc.

Industrial use: Water is a valuable resource to the nation’s industries for such
purposes as processing, cleaning, transportation, dilution, and cooling
in manufacturing industries. Major water-using industries include cloth,
steel, chemical, paper, and petroleum refining. Industries often reuse
the same water repeatedly for more than one purpose. Water is used as a
solvent in many industrial processes. It is also used for cooling certain parts of machines.

Irrigation: Water is artificially applied to farm, orchard pasture, and
horticultural crops, as well as leaching of salts from the crop root
zone in sodic soils. Non-agricultural activities include self-supplied
water to irrigate public and private flower gardens, loans, football
pitches, etc. Crop production in areas that receive little rainfall per
year can be achieved through the practice of irrigation. Water for
irrigation purposes can be drawn from rivers, lakes, swamps and even from seas.

Water as a solvent: Water is regarded as a universal solvent. It dissolves almost all substances.
For this reason, it is used for dissolution of chemicals ranging from
poisonous chemicals used in agriculture to non-poisonous chemicals used
in hospitals, laboratories, research stations and for other general purposes.

Cooling and heating: Due to its high specific heat capacity, water is used as a coolant for cooling
automobile engines and other machines. Hot water is used during winter
for heating homes in temperate countries. In higher plants, evaporation
causes a cooling effect and therefore helps to cool plant organs. During
hot weather, some animals tend to wallow in water in order to cool
their bodies either through evaporation or by water itself.

Habitat: Water is a habitat for fish and all aquatic animals and plants.

Livestock use: This includes water for stock animals, feedlots, dairies, fish farms
and other non-farm animals. In arid regions of Tanzania, the Government
has constructed dams to supply water to cattle, and for some domestic uses.

Mining: Water is used in mines for extraction of naturally occurring minerals: solids, such as coal and
ores; liquids, such as crude petroleum; and gases, such as natural gas.
This includes quarrying, milling (such as crushing, screening, washing,
and flotation), and other operations as part of mining activity.

Generation of electricity: Hydroelectric power is generated by river water. Fast-moving river
water (especially in waterfalls and cataracts) is used to turn turbines
to generate hydroelectricity that is supplied to homes, industries,
towns, etc. Most of the electricity we use at home is generated by this
means. Only a small portion is generated through other means.

Navigation and recreation: People, goods and services can be transported via water bodies like
rivers, lakes and oceans by using vessels such as boats, dhows, canoes
and ships. Water is also used for sports such as swimming, canoeing,
fishing, yachting, water skiing, and many other sports carried out on, in and under the water.

The Solubility of Different Substances in Water and Organic Solvents

Water is a very good solvent for many ionic substances. There are few
substances, which do not dissolve in water to some extent. Even when you
drink a glass of water, you are also drinking a little of the glass as
well. The amount is very small indeed, but for certain experiments
ordinary glass vessels cannot be used as containers for water because of
this solvent effect. Water is the commonest solvent in use, but other
liquids, are also important. The other solvents are generally organic
liquids such as ethanol, propanone, trichloroethane, etc. These organic
solvents are also important because they will often dissolve substances
that do not dissolve in water. The following table shows an example of
substances that dissolve in water.Substances soluble and insoluble in water

Soluble compounds Insoluble compounds
1 All common sodium, potassium and ammonium salts
2. All common nitrates of metals
3. All common chlorides except………………….. silver, mercury (I) and lead chloride
4. All common sulphates except………………….. lead, barium and calcium sulphates
5. Sodium, potassium, and ammonium carbonates… but other common carbonates are insoluble
6. Sodium, potassium and ammonium hydroxides… but other common hydroxides are insoluble.

When salt is added to water and the mixture stirred, the salt dissolves. The product formed is termed as a solution. The solid that dissolves is known as a solute and the liquid (water) in which a solute dissolves is a solvent.We can continue to add more salt and stir until no more salt dissolves. At this point, the water has dissolved the maximum amount of salt possible. The amount of salt dissolved denotes the maximum amount of salt which can normally be held in solution.
Screenshot From 2015 08 27 12 24 48 1440667521225

Adding a salt to water

The solution made is called  saturated solution. The amount of the salt that has dissolved is called the solubility of the salt in water.

The solubility of a substance is usually expressed as the mass of the substance
dissolved in 100g of water. Solubility is sometimes expressed in moles
of solute per dm3 of solution at that temperature.To
give a quantitative meaning to solubility, it is necessary to fix the
amount of the solvent used and to state the temperature at which
dissolution occurs. The amount of solvent is usually fixed at 100g. For
example, the solubility of sugar (sucrose) at 20ºC is 240g in 100g of
water. What is the maximum weight of sugar that will dissolve at 20ºC in
a cup containing 350g of water?

saturated solution of a solute at a particular temperature is the one which will not dissolve any more of the solute at that temperature.

The solubility of a solute in water at a given temperature is the maximum amount of it
that will dissolve in 100g of water at that temperature.

Dissolving a solid in water

Generally, the solubility of a solute increases with increase in temperature.
However, there are a few exceptions e.g. the solubility of calcium
hydroxide decreases with increase in temperature. Sugar dissolves very
slowly in water at room temperature (20ºC). Stirring helps to make sugar
dissolve more quickly. But if you keep on adding sugar to the water
even with continuous stirring, eventually no more sugar will dissolve.

.Screenshot From 2015 08 27 12 31 56 1440668111904

Dissolving a solid in water at room temperature

Now let us look at what happens when you heat the sugar solution. If you
heat the solution up to 20ºC there is still undissolved sugar at the
bottom of the beaker. Increasing the temperature to 50ºC makes some
sugar dissolve but there is still some left. But if the temperature is
raised up to 80ºC all the sugar dissolves. You might even be able to
Screenshot From 2015 08 27 12 37 09 1440668301427

Dissolving a solid in water at higher temperatures

Therefore, sugar is more soluble in hot than in cold water. In fact, this is
usually the case with soluble solids. If a solid is soluble in a liquid,
it usually gets more soluble as the temperature rises.

Solubility of different substances in different solvents

The solubility of a substance depends on the following factors:

1. The type of solvent used:
Iodine is slightly soluble in water. Only 0.3g will dissolve in 100g of
water at 20ºC. However, it is much more soluble in cyclohexane (organic
solvent). 2.8g of iodine dissolve in 100g of cyclohexane at 20ºC

2. The particles in it: Let us consider the dissolution of sodium chloride in water. When dissolved in water, the salt dissolves to form Na+ and Cl– ions. If sodium chloride is added to water, the Na+ ions will be attracted to the slightly negatively charged oxygen atoms of the water molecules whereas Cl– ions will be attracted to the slightly positively charged hydrogen atoms of the water.

Screenshot From 2015 08 27 12 44 00 1440668889022

3. The temperature of the solvent:
As we saw early, the temperature affects the solubility of substances,
particularly solids. The higher the temperature the higher is the
solubility.If you shake some cyclohexane with a solution of iodine in water, almost
all iodine leaves the water and moves into cyclohexane layer. So,
cyclohexane is much better than water at separating iodine particles
from each other. The iodine particles are more attracted to cyclohexane
than they are to water. So, the solubility of each substance is
different. Look at these examples:

Compound Mass (g) dissolving in 100g of water at 25ºC
Silver nitrate 241.3
Calcium nitrate 102.1
Magnesium chloride 53.0
Potassium nitrate 37.9
Potassium sulphate 12.0
Calcium hydroxide 0.113
Calcium carbonate 0.0013
Silver chloride 0.0002

As you can see, one compound of a metal may be slightly soluble while
another is almost soluble (compare silver nitrate and silver chloride).
It depends on particles.

Measuring the solubility of a solid in water

Let us take potassium sulphate as our example. This is what to do:

  1. Put a weighed amount (say 2g) of potassium sulphate in a test tube. Add a little water from a measuring cylinder.
  2. Heat the test tube gently until the water is hot but not boiling. Add more water if necessary until the solid is just dissolved.
  3. Let the solution cool while stirring it with a thermometer. Note the temperature at which the first crystals form.

Screenshot From 2015 08 27 13 03 34 1440669925025

3. If you add a little more water, heat the solution again to make sure
all the crystals have dissolved, and then let it cool, you will be able
to find the solubility at a lower temperature. You can repeat this for a
range of temperatures.

Calculating solubility

Since you know the mass of solute and the volume of water you used, you can
work out the solubility as shown in the calculation below:Example 12 grams of potassium sulphate were dissolved in 12.5 cmof water. On cooling, the first crystals appeared at 60ºC. What is the solubility of potassium sulphate in water at 60ºC?

Solution

12.5 cm3 of water weighs 12.5g. Also, remember that solubility is measured by 100g of water. If 2g of the salt dissolved in 12.5g of water, then the amount of the salt in 100g of water.

Screenshot From 2015 08 27 13 09 10 1440670459091

Therefore, the solubility of potassium sulphate in water at 60ºC is 16 grams.

Solubility of gases

Solid solutes usually get more soluble in water as the temperature rises. The opposite is true for gases. Table 3.3 shows the solubility of different gases in water at different temperatures.Solubility of different gases in water

Gas Solubility (cm3 per 100cmof water) at…..
0ºC 20ºC 40ºC 60ºC
Oxygen Carbon dioxide Sulphur dioxide Hydrogen chloride 4.8171798050500 3.392.3425047400 2.556.6217044500 1.936.0-42000

Look at carbon dioxide. It is quite soluble in water at room temperature
(20ºC). But when it is pumped into soft drinks under pressure, a lot
more dissolves. Then when you open the bottle, it fizzes out of
solution.Look at hydrogen chloride. At room temperature, it is over 14000 times more soluble than oxygen.Generally,
the solubility of gases changes with temperature and pressure. It
decreases with temperature and increases with pressure.

Solubility curves

The solubility of a particular solid in water can be measured over a range
of temperatures up to 100ºC. The maximum mass of solid that will
dissolve in 100g of water is found at each temperature. The values at
each temperature can then be plotted to give a solubility curve. A curve
that shows how the solubility of a substance changes with temperature
is what we call a solubility curve.Table bellow shows the solubility of some salts in water at different temperatures.Solubility of some salts in water

Temperature in ºC Solubility in g of salt per 100g of water
Sodium chloride Copper (II) sulphate Potassium nitrate
10 38 18 20
20 38 20 30
30 38 24 44
40 38.5 28 60
50 38.5 34 80
60 39 42 104
70 39 50 152

For most substances, solubility in water increases with increase in temperature. Table above shows the solubility of some salts in water at different temperatures.When the values for each salt shown on the table are represented on a graph paper, different solubility curves result.Look at the values in table above again. On a graph paper, use the same set of axes to plot solubility (vertical axis) against temperature (horizontal axis). Draw a smooth best-fit curve for each salt.

  • Which of the salts is the most soluble at 15ºC?
  • Which of the three salts is the most soluble at 55ºC?
  • At which temperature do sodium chloride and potassium nitrate have the same solubility?

The curves in figure bellow show how the solubility of different salts
changes with temperature. You can see that the solubility of most solids
increases with increase in temperature. The increase for sodium
chloride is very small and almost negligible. The increase for the other
salts is as shown in the graph.Screenshot From 2015 08 27 14 30 44 1440675517572Solubility curves for three solids in water (solubility measured in grams of solid per 100g of water)For
gases, the solubility decreases with increase in temperature. This
means that decreasing the temperature will increase the solubility of
gases. Figure 3.10 shows the solubility curves for some common gases.
Compare these curves with those for solids in figure above.Screenshot From 2015 08 27 14 36 46 1440675518237The solubility of three gases from the air in water (solubility measured in grams of gas per 100g of water)Using solubility curvesData can be obtained from the solubility curves in various ways. For example, look at figure above.(a) What mass of potassium nitrate dissolves in 100g of water at

  • 40ºC and
  • 50ºC?

From the graph:

  • At 50ºC, 137.5g of potassium nitrate dissolve in 100g of water.
  • At 40ºC, 62.5g of potassium nitrate dissolve in 100g of water.

(b) What mass of potassium nitrate will crystallize out when a saturated solution in 100g of water is cooled from 50ºC to 40ºC?

Screenshot From 2015 08 27 14 51 41 1440676398194

21 COMMENTS

  1. I think thios is one of the most important information forr me.

    And i am glad reading your article. But wanna remark on few general things,
    Thhe web site style is perfect, thhe articles is really great!

  2. Excellent post. I was checking continuously this blog and I am impressed!
    Extremely useful information. I care foor such information a lot.
    I was ooking for this certain information for a verdy long time.Thank you annd good luck.

  3. Greetings! Very helpful advice in this particular article!It’s the little changes thast make the
    most important changes. Many thanks for sharing!

  4. Very nice post. I just stumbled upon your blog annd wanted
    to say that I’ve truly enjoyed surfing around your blog posts.

    In any case I will be subscribingg to your feed and I hope you write again very soon!

LEAVE A REPLY

Please enter your comment!
Please enter your name here

error: Content is protected !!